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transition for the Dicke Hamiltonian 
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Abstract. The thermodynamic equilibrium properties of the Dicke Hamiltonian for a 
collection of spin4 particles interacting via magnetic dipole interaction with a single mode 
of the radiation field and with each other by spin-spin interaction are analysed and the 
conditions for the existence of a super-radiant phase transition are derived. It is shown, 
using the approximate long-range spin-spin interaction (MI), in the Dicke Hamiltonian, 
that the conditions for the existence of the super-radiant phase transition are invariant 
with respect to isotropic MI whether or not the A’ term is included. If the counter- 
rotating terms in the spin-radiation field interaction are dropped from the Hamiltonian, 
the MI lowers the transition temperature. For anisotropic MI, the transition temperature is 
raised or lowered depending specifically upon the anisotropy. The conditions for the 
existence of the super-radiant phase transition are independent of the Curie temperature. 
These results easily generalise to finite many modes of the radiation field. 

1. Introduction 

There has been much recent interest in the phase transition in thermodynamic 
equilibrium of the Dicke model Hamiltonian (Dicke 1954) in its various ‘dressed’ 
forms. This has been stimulated by the proof (Hepp and Lieb 1973a) that Dicke’s 
Hamiltonian predicts the existence of a second-order phase transition for a certain 
range of values for the coupling constants. Since the work of Wang and Hioe (1973) 
and Hepp and Lieb (1973b) which simplified the calculational aspects of the Hepp and 
Lieb procedure and that of Gilmore and Bowden (1976a) which produced further 
simplification and facilitated ease of calculation of the conditions for the existence of 
phase transitions for various ‘dressed’ forms of the Dicke Hamiltonian, much pub- 
lished work has appeared dealing with various ramifications of Dicke’s original 
Hamiltonian (Carmichael et a1 1973, Kudenko et a1 1975, Thompson 1975, 
Rzaiewski et a1 1975). 

The importance of the atomic interaction in the discussion of the thermodynamic 
equilibrium properties of the Dicke Hamiltonian is obvious. The condition for the 
existence of a phase transition in the Dicke model Hamiltonian is enhanced by higher 
density, but the atomic interaction, which in itself may cause a phase transition even in 
the absence of the electromagnetic field, becomes increasingly important. However, 
to our knowledge, none of the authors of previous work have considered the effect of 
direct interaction among the atoms, except for Kudenko et a1 (1975) who treated the 
effect of interatomic Coulomb interaction. In their work they use the molecular field 
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approximation, and the Coulomb contribution to their Hamiltonian gives only 
diagonal terms. 

phase transition in the Dicke model Hamiltonian in thermodynamic equilibrium. For 
the purpose of simplified mathematical manipulation we introduce a simple form for 
the magnetic atomic interaction (MI), namely, that the interaction is independent of 
the interatomic distance. This is a good approximation for the long-range dipole- 
dipole interaction among the atoms contained in a volume smaller than a wavelength 
of the electromagnetic field. Although it is a poor approximation for the short-range 
force like the Heisenberg exchange interaction, this approximation for the atomic 
interaction is necessary for the Dicke model which has no spatial dependence, i.e. it is 
a point model?. The results of our calculation are therefore readily applicable to a 
system of magnetic moments contained, say, in a microwave cavity. For this reason 
and for simplicity we restrict our treatment to that for one mode of the radiation field, 
although the calculation easily generalises to finite many modes. 

In the next section we discuss the modified Dicke Hamiltonian and introduce a 
canonical transformation which simplifies subsequent calculations. The method of 
Gilmore and Bowden (1976a, b) is used to obtain a linearised thermodynamically 
equivalent Hamiltonian for the modified Dicke model in $ 3, and the corresponding 
free energy as a function of variational parameters is derived. In $4 we minimise the 
free energy in the variational parameters which results in a set of coupled non-linear 
equations from which the gap equations for the super-radiant phase transition are 
derived. The results of the calculations are discussed in 0 5 in terms of conditions on 
the parameters in the model for the existence of a super-radiant phase transition in the 
atom-radiation field interaction. 

in this paper we the efieci of tiie inferaciion on the super-radiant 

2. The modified Dicke model 

The Dicke Hamiltonian in one radiation field mode including the A2 term (Riazewski 
et a1 1975, Gilmore and Bowden 1976b) and MI denoted by J" is 

where r = 0 , l  labels the contributions from the counter-rotating terms in the atom- 
field interaction, and 

s: =tu: (2.2) 
is the a t h  component of the gth spin. Here, and throughout, we set h =  1. We also 
assume that 41, JL > 0 in the following discussion. Furthermore, we have assumed in 
(2.1) that the collection of spins is contained in a volume much smaller than a 
wavelength of the radiation field. This assumption is consistent with the usual form 
for the Dicke model Hamiltonian. 

t The spin wave theory, which is a mean-field approach in momentum space, should of course be used to 
discuss the thermodynamic equilibrium properties of an extended ferromagnet. The model with spatial 
consideration involves a more involved calculation and will appear in a subsequent publication. 
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It is convenient to perform a canonical transformation of (2.1) to get 

where 

and (Gilmore and Bowden 1976b) 

w r = w J f  

A '  = $A [ (1 + r)f-1'4 + (1 - r)f1'4] 

K 

w 
f = 1 + 4  -. 

(2.Sa) 

(2 .5b )  

( 2 . 5 ~ )  

(2.5d) 

There are at least three methods that can be used to calculate the gap equations 
associated with the equilibrium statistical mechanics of (2.1). They are: (a) the Green 
function approach to calculate the coupled non-linear equations for (a+), (a-), (a)  
and (at), and (a");  ( b )  the method of Wang and Hioe (1973); and (c) the linearisation 
procedure of Gilmore and Bowden (1976a, b). All three methods result in the same 
expressions for the gap equationst. 

The set of Green functions (Zubarov 1960) which should be used to derive the 
coupled non-linear equations is 

and 

Gat - t ' )  = -iO(t - t')([ai(t), a;(t')]+). (2.7) 

If the corresponding equations of motion are solved using standard decoupling ap- 
proximations (Fetter and Walecka 1971, Hubbard 1959)t, the desired coupled non- 
linear equations are derived. 

The solution to the resulting equations leads to identical conditions for the exis- 
tence of a phase transition that one obtains from the functional integration method 
(Wang and Hioe 1973), as well as that obtained from the linearisation procedure 
(Gilmore and Bowden 1976a, b). In our opinion, the latter procedure is by far the 
simplest of these methods to apply; therefore, we restrict our calculation to the 
linearisation procedure in the next section to determine the gap equations and 
corresponding conditions for the existence of a phase transition and critical tempera- 
ture. 

t The equivalence of the structure of (2.1) to the BCS model should be'noted, and both can be solved in the 
thermodynamic limit. The equivalence of the mean-field approach, the Green function method, and the 
functional integral method in the BcS model is given by Fetter and Walecka (1971) and Hubbard (1959). 
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3. Linearisation of the Hamiltonian 

The linearisation method has been developed and applied to selected cases in earlier 
publications (Gilmore and Bowden 1976a, b); therefore, we simply outline the pro- 
cedure in what follows. The equilibrium thermodynamics of (2.3) can be completely 
determined if the free energy F is known: 

e-@F = Tr (3.1) 

As it stands, the bilinear combination of operators in (2.3) precludes the actual 
performance of the operation on the right-hand side of (3.1). However, the Hamil- 
tonian X’, i.e. (2.3), can be linearised (Gilmore and Bowden 1976a) to give a 
thermodynamically equivalent Hamiltonian %I! such that the associated linearised 
free energy FL satisfies the condition (Gilmore and Bowden 1976a, b), 

where U, vi, and q j  are adjustable parameters chosen variationally. These parameters 
are introduced by replacing a, a;, and a; in the interaction part of (2.3) by the 
following: 

a = ( a  - u ) + u ,  (3.3a) 

(3.36) 

af = (af -vi)+ vj. (3.3c) 

r = X;+ 2; + %Ao + XLo + X A L ,  (3.4) 

x;= w’ata + [ a + ~ j  + U V T  +r’(atvT + a ~ j ) ] ,  (3.5a) 

a; = (a; - vi) + vj, 

The result is that (2.3) can be written in the equivalent form 

where 
A ’  

\ l N j  

(3.5b) 

(3.5c) 
A ‘  

= - JN [U * vi + U V T  + r’(u * v T  + uvj)J ,  

(3.5d) 

c { ( a t - U * ) ( a ; - v j ) + ( Q - ~ ) ( a f - v ~ )  
A ’  

+JN j 

+rr[ (a t -u*)(a: -vyf )+(u  - u ) ( ( ~ ~ - v ~ ) ] } .  

€ 0  = E - U B H .  

Here we have written 
(3.5e) 

(3.6) 
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If the adjustable parameters in (3.3) are chosen variationally to minimise the free 
energy, the procedure developed by Gilmore and Bowden (1976a, b) can be used to 
show that the contribution to the free energy per particle f = FIN of the bilinear part 
of (3.4), i.e. (3.5e), vanishes in the limit (3.2). The choice of the parameters in (3.3) 
which does this is 

U = ( a ) ,  (3.7u) 

(3.7b) 

qj = q = (U ‘ ) .  (3.7c) 

vj = v = (U-) ,  

The adjustable parameters introduced in (3.3) are therefore seen to be order 
parameters for the system. Thus, the Hamiltonian XL thermodynamically equivalent 
to (3.4) is 

XL = Xk+ 2eA + %Ao + XLO (3.8) 

where the terms on the right in (3.8) are given by (3.5). The linearised free energy is 
then calculated from 

(3.9) e - B F ~  = Tr e - @ z ~  

and in the limit (3.2) 

f L  = FL1-V (3.10) 

is an exact result. It is to be noted that the last two terms in (3.8) are c-numbers and 
can therefore be dropped as far as the calculation of thermal averages is concerned, 
They do, however, contribute to the linearised free energy Fl-, 

f L  = bJ11q2 + Jll vi2 - A ’ [ U  ‘* v + U v* + r’(u’* v* + u ’ v ) ]  

From (3.9), (3.10), and (3.5) the free energy per particle f L  is 

A l 2  1 1 
w P P 

- y l ( v  + r’v*)I2-- In 2 -- In cosh pe (3.11) 

where 

e = [ ( + E ~  - t ~ l l q  + IA ‘ ( U  + r f u  ’*) - ~ ~ v l ~ ] ~  (3.12) 

and we have written in (3.11) 

u f  = u/ . /N .  (3.13) 

In the next section we use (3.1 1) to develop the coupled non-linear equations from 
which the gap equations are derived. 

4. Calculation of the gap equations 

We now require that the free energy f L ( u f ,  v, q )  be a minimum in the parameters (3.7). 
It is necessary that the following three normal equations be satisfied: 

afL/aur = 0,  ( 4 . 1 ~ )  

afL/av = 0, (4.1 b) 

a f L / a q  = 0. ( 4 . 1 ~ )  
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Explicitly, from (3.11) and (3.12) 

( 4 . 2 ~ )  

G- A l 2  - JLv* - A ’(U‘* + r ‘u’ ) -  7 [ (v + r’v*)r’ + (v* + r’v)]  
av  w 

tanh pe 
2e + JL[A ’(U’* + r‘u ’) - JL v*] ~ - 0  - 

tanh pe - 0. af L - = 77 + ( E O  -4177) - - 
377 2e 

(4.2b) 

( 4 . 2 ~ )  

It is to be noted that equation ( 4 . 2 ~ )  gives an immediate expression for the 
magnetisation: 

(4.3) 

which is the standard result if the order parameters ( 3 . 7 ~ )  and (3.7b) are set equal to 
zero. 

Equations ( 4 . 2 ~ )  and (4.2b) have the solution v = U ’  = 0. This corresponds to the 
chaotic branch of the free energy (Gilmore and Bowden 1976a, b). These two 
equations and their complex conjugates combine to eliminate v and v* to give the 
following equations: 

The non-trivial solutions to (4.4) and (4.5) give, respectively, the equations 

where we have used (3.12) to write 8 in the denominators in (4.4) and (4.5) in the form 

(4.8) e = ~ ( E ~ - J ~ , ~ ) ( I  + lg12)1/2 
where 

4/A ’(U’ + T‘U ’*) - J I v  

(€0  - 4177 )* 
1gI2 = (4.9) 

If (4.3) is used to eliminate 77 from the right-hand side of (4.6) and (4.7), the results 
are 

-1 tanh pe 
(4.10) 
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and 

where we have used (4.3) together with (4.8) to get 

tanh pS 
(1 + lg12)1/2 = - 7). 

(4.11) 

(4.12) 

For U' = v' = 0, then lgI2 = 0, and, provided a solution exists, (4.10) and (4.1 1) each 
correspond to a gap equation which represents a bifurcation of the free energy at the 
respective critical temperatures (Gilmore and Bowden 1976a, b). We have explicitly 

-1 (1 + r)' 0+4K + Jl-41) tanh pd"& = E 

and 
2 -1  

tanh pc'2'Sc = eo( "(1 - r )2  - (4i+JI))  
w 

(4.13) 

(4.14) 

where 

8, = %eO - ~ ~ 7 7  ) (4.15) 

and we have used (2.5) to transform back to the original parameters in the Hamil- 
tonian (2.1). 

The magnetisation is determined by (4.12) which requires that 

-1 < 7) CO. (4.16) 

The minimum branch in the free energy is determined by examination of the eigen- 
values of the free energy stability matrix (Gilmore and Bowden 1976b) I fL j j l .  The 
branch corresponding to (4.10) or (4.1 1) with the higher transition temperature given 
by (4.13) or (4.14) respectively, is the minimum, and the one with lower transition 
temperature is not stable. 

5. Conclusions 

We have verified that three methods, that of Wang and Hioe (1973), a Green function 
technique (Zubarov 1960), (2.6) and (2.7), and the linearisation method of Gilmore 
and Bowden (1976a, b) all lead to the same equations, (4.13) and (4.14). In this paper 
we used the linearisation procedure to derive these results. 

Consider the special case of isotropic MI, JL = Jil and the counter-rotating terms in 
the atom-radiation field interaction present, i.e. from (2.5c), r' = r = 1. A solution to 
(4.14) in this case does not exist, and there can be only one bifurcation of the free 
energy corresponding to (4.13). Examination of the eigenvalues of the free energy 
stability matrix (Gilmore and Bowden 1976b) shows that the ordered branch, if it 
exists, is indeed a minimum. The isotropic MI has no effect on the condition for the 
existence of a phase transition which is explicitly 

(5.1) eow'/4A " < 1. 
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The only effect of the MI in this case is to raise the critical temperature (4.13) and 
(4.15). If the counter-rotating terms in the atom-field interaction are dropped, i.e. 
r = 0, then (4.14) may correspond to the minimum branch in the free energy depend- 
ing upon whether or not the term Jll+JL in the denominator is weak enough to 
produce a crossover (Gilmore and Bowden 1976b) of the bifurcation point with that 
given by (4.13) to give a higher critical temperature. Even if it does, the magnetic 
interaction causes more stringent requirements to be placed on the other parameters 
in the Hamiltonian for a phase transition to exist, i.e. (5.1) is now replaced hy 

For the case where 41 = 0, J-  # 0, and r = 1, there is again only one bifurcation of 
the free energy from the chaotic branch given by (4.13). In this case the MI enhances 
the condition for a phase transition to exist, namely, 

so that A ’ * / w ‘  can be smaller than the requirement corresponding to (5.1). In this case 
MI increases the critical temperature. 

From the form of (4.13) and (4.14), it is recognised that .TI can enhance the 
condition for a phase transition to exist, whereas Jll always tends to destroy the 
possibility for a phase transition. Putting this in a different light, JL can aid to induce a 
macroscopic transverse polarisation, but 41 tends to prevent this by producing a 
‘rigidity’ in the direction of the DC magnetic field H. 

It is to be noted that the right-hand side of (4.13) and (4.14) is independent of the 
magnetisation parameter 7.  Therefore, the conditions for the existence of a super- 
radiant phase transition are independent of any ferromagnetic transition temperature 
dictated by (4.3). The super-radiant phase transition temperature does, however, 
increase with the magnetisation as seen by using (4.15) in (4.13) or (4.14). The 
super-radiant gap equations (4.13) and (4.14) are valid below as well as above the 
Curie temperature. 
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